Óbudai University				Institute of Mechatronics and Vehicle Engineering				
Donát Bánki Faculty of Mechanical and Safety Engineering								
Course name and Neptun-code: System Engineering BME					ERTE3BNE Credits: 4			
Full time, 1st Semester of the Academic year 2022/23								
Faculties in which the subject is taught: BSc in Mechatronics								
Supervised by: Prof. Dr. Pokorádi László full pro			zló full professor	Lecturer:		Prof. Dr. Pokorádi László full professor		
Prerequisites conditions Mathematics II.								
Lessons per week		eory: -	Classroom practice.: 2		Labor: 1		Consultation:	
Exam type (s,v,f):	exa	ım						
A tananyag								

Aim: Development of engineering and problem-solving thinking, presentation of the tools of mathematical modeling required for engineering work, acquisition of basic modeling and systems analysis methods.

Schedule						
Week	Topics					
1.	Theoretical Background					
2.	Parameters & Signals					
3.	Dimensions of Parameters					
4.	Classification of Systems					
5.	Models					
6.	Mathematical Modelling I.					
7.	Mathematical Modelling II.					
8.	Dimensional Analysis					
9.	Description of physical processes					
10.	Graphs & Networks					
11.	Deterministic System's Modelling					
12.	Application of Models					
13.	Monte-Carlo Simulation					
14.	Retake					

Literatures:

- Pokorádi László Szabolcsi Róbert: Mathematical Models Applied to Investigate Aircraft Systems. Budapest: Mûegyetemi Kiadó, 1999. 146 p. Monographical Booklets in Applied and Computer Mathematics; 12. ISBN:ISSN 1417 278 X.
- 2. ALBERT-LÁSZLÓ BARABÁSI: Network Science, https://barabasi.com/book/network-science
- 3. Applied Dimensional Analysis and Modeling, Kindle Edition
- 4. System Book, http://sysbook.sztaki.hu/bevezeto_en.php
- 5. Moodle electronic materials